C^k -solvability near the characteristic set of a class of complex vector fields

Paulo Leandro Dattori da Silva Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo

Abstract. Let

 $\mathcal{L} = \partial/\partial t + x^r (a+ib)(x,t)\partial/\partial x,$

be a complex vector field defined on $\Omega_{\epsilon} = (-\epsilon, \epsilon) \times S^1$, $\epsilon > 0$, where *a* and *b* are C^{∞} real-valued functions. Suppose that $\Sigma = \{0\} \times S^1$ is the characteristic set of \mathcal{L} . Let $f \in C^{\infty}(\Omega_{\epsilon})$ satisfying

$$\int_0^{2\pi} \frac{\partial^{(j)} f}{\partial x^j}(0,t) dt = 0, \quad j = 0, \cdots, r-1.$$

In this lecture we are going to talk about existence of C^k solutions for the equation $\mathcal{L}u = f$ in a full neighborhood of Σ , when \mathcal{L} satisfies some additional hypothesis:

• when r = 1 and $t \mapsto b(0, t) \neq 0$, $\forall t \in S^1$, we will show that the equation $\mathcal{L}u = f$ has a C^k solution defined in some neighborhood of Σ , for any $k \geq 1$;

• when r = 2 we will consider that a + ib depends only on x-variable. We will show that the interplay between the order of vanishing of a and b has influence on the C^k -solvability.

*The author was partially supported by FAPESP