Critical Elliptic Systems crossing high eigenvalues

Daniel Cordeiro de Morais Filho¹ Universidade Federal de Campina Grande, Brazil

Abstract. In this paper we study the existence of multiple solutions for the non-homogeneous system

$$\begin{cases} -\Delta u = au + bv + \frac{2\alpha}{\alpha + \beta} u_{+}^{\alpha - 1} v_{+}^{\beta} + f, & \Omega \\ -\Delta v = cu + dv + \frac{2\beta}{\alpha + \beta} u_{+}^{\alpha} v_{+}^{\beta - 1} + g, & \Omega \\ u = v = 0, & \partial\Omega, \end{cases}$$
(1)

where $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain; $\alpha, \beta > 1$ are real constants, $\alpha + \beta = 2^*$, where $2^* = \frac{2N}{N-2}, N \ge 3$; $w_+ = max\{w, 0\}$ and $f, g \in L^s(\Omega)$ for some s > N. Our main hypothesis is that the eigenvalues of the symmetric matrix $A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$ lies between two consecutive eigenvalues of the Laplacian operator.

This is a joint work with Fábio R. Pereira from Universidade Federal de Juiz de Fora and Marco Aurélio S. Souto from Universidade Federal de Campina Grande.

 $^{^1{\}rm The}$ authors were partially supported by CNPq-Brazil, CNPq/PADCT under grant 620025/2006-9, by Projeto Universal/CNPq under grant 472281/2006-2 and by Projeto Casadinho