BIFURCATION OF EQUILIBRIA FOR THE CHAFEE-INFANTE SYSTEM ON A SQUARE

JOSÉ CARLOS FERNANDES DE OLIVEIRA

We study the local bifurcations from zero of equilibrium points of the dynamical system $\left\{\mathcal{S}_{\lambda}(t): t \geq 0\right\}$, defined by the family of solution-operators at time- $t \geq 0, \mathcal{S}_{\lambda}(t): \varphi \in$ $H_{0}^{1}(Q) \mapsto \mathbf{u}(t) \in H_{0}^{1}(Q)$, where $\mathbf{u}(t)(x, y) \equiv u(t, x, y)$ is the mild solution of the semilinear parabolic scalar equation $u_{t}=\Delta u+\lambda\left(u-d u^{3}\right), t>0,(x, y) \in Q$, satisfying the Dirichlet boundary condition $u(t, x, y)=0, t \geq 0,(x, y) \in \partial Q$, and the initial condition $u(0, x, y) \equiv \varphi(x, y)$, where Q denotes the square $] 0, \pi[\times] 0, \pi[, \partial Q$ the boundary of Q, λ and d positive constants, $H_{0}^{1}(Q)$ the closure of $C_{0}^{\infty}(Q)$ in the Sobolev space $H^{1}(Q)=W^{1,2}(Q)$, with respect to the inner product $\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{H^{1}}=\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{L^{2}}+\left\langle\nabla \varphi_{1}, \nabla \varphi_{2}\right\rangle_{L^{2}}$.

A typical result we can prove states that, when λ crosses from the left the value 50 , which is an eigenvalue with multiplicity 3 , of Δ on $H_{0}^{1}(Q) \cap W^{2,2}(Q)$, there appears $3^{3}-1=26$ nontrivial distinct equilibrium points near zero.
(José Carlos Fernandes de Oliveira) Departamento de Matemática, Universidade Federal do Pará

E-mail address: zecarlos@ufpa.br

