MULTIPLICITY OF SOLUTIONS FOR A CONVEX-CONCAVE PROBLEM WITH A NONLINEAR BOUNDARY CONDITION

EMERSON. A.M. ABREU, P. C. CARRIÃO, AND O. H. MIYAGAKI

We study the existence of multiple positive solutions for a convex-concave problem with a nonlinear boundary condition involving two critical exponents and two positive parameters λ and μ of the type

$$\begin{cases} -\Delta u + u = \lambda u^{q_1} + u^{p_1} & \text{in} \quad \Omega, \\ \frac{\partial u}{\partial \nu} = \mu u^{q_2} + u^{p_2} & \text{on} \quad \partial\Omega, \\ u > 0 & \text{in} \quad \Omega, \end{cases}$$
(P_{\lambda \mu})}

where $0 < q_i < 1 < p_i < \infty$ $(i = 1, 2), \Omega \subset \mathbb{R}^N$ $(N \ge 3)$ is a smooth bounded domain and $\frac{\partial u}{\partial \nu}$ is the outer unit normal derivative.

We obtain a continuous strictly decreasing function f such that $K_1 \equiv \{(f(\mu), \mu) : \mu \in [0, \infty)\}$ divides $[0, \infty) \times [0, \infty) \setminus \{(0, 0)\}$ in two connected sets K_0 and K_2 such that problem $(P_{\lambda\mu})$ has at least two solutions for $(\lambda, \mu) \in K_2$, at least one solution for $(\lambda, \mu) \in K_1$ and no solution for $(\lambda, \mu) \in K_0$. This work is related with following papers [2], [3], [4] and [6].

By sub and super solution method [1], we obtain a minimal positive solution of $(P_{\lambda\mu})$, and we employ a version of the Ambrosetti-Rabinowitz Mountain Pass Theorem due to Ghoussoub and Preiss [5] in order to get the second positive solution.

References

- H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM 18, 620–709 (1976).
- [2] A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994).
- [3] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36, 437–477 (1983).
- [4] J. Garcia-Azorero, I. Peral and J. D. Rossi, A Convex-concave problem with a nonlinear boundary condition. J. Diff. Eqns. 198, 91–128 (2004).
- [5] N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincare, Anal. Nonlineaire. 6, 321–330 (1989).
- [6] D. Pierotti and S. Terracini, On a Neumann problem involving two critical Sobolev exponents: remarks on geometrical and topological aspects. *Calc. Var.* 5, 271–291 (1997).

(E.A.M. Abreu) Departamento de Matemática, Universidade Federal de Minas Gerais, 31270-010 Belo Horizonte MG, Brazil

E-mail address: emerson@mat.ufmg.br

(P. C. Carrião) Departamento de Matemática, Universidade Federal de Minas Gerais, 31270-010 Belo Horizonte MG, Brazil

 $E\text{-}mail\ address: \texttt{carrionQmat.ufmg.br}$

(O. H. Miyagaki) Departamento de Matemática, Universidade Federal de Viçosa, 36571-000 Viçosa MG, Brazil

E-mail address: olimpio@ufv.br