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We address the question of existence of nonconstant stable stationary solution (pattern,
for short) to the problem

(1)

 ut = 4u, (t, x) ∈ R+ × Ω
u(0, x) = u0(x) x ∈ Ω
∂νu = λ f(u), (t, x) ∈ R+ × ∂Ω

where Ω ⊂ RN is a smooth convex domain, λ ∈ R+ and f a smooth assigned function.
In [1] the authors, in a computer-assisted work and using bifurcation techniques, give

strong evidence that when f(u) = u− u3, λ > 2, 84083164 and Ω the unit square (whence a
convex planar domain), then (1) has a pattern.

Such solutions were known to exist for dumbbell type domains [2] and not to exist when
Ω is the N -dimensional ball [3].

One way the sphere ∂BR(0) differs from any other convex hyper-surface ∂Ω is that the
mean curvature of the former is constant whereas it varies in latter case. In order to explore
this fact we utilize convenient coordinates to write

(2) 4v = 4Mv + (N − 1) H(·) ∂νv + ∂2
νv on M = ∂Ω,

where H(·) is the mean curvature ofM and4Mv = gαβu,αβ is the Laplace-Beltrami operator
with respect to the induced metric.

When the boundary condition is incorporated, we obtain the evolution equation

∂u

∂t
= 4Mu + λ(N − 1) H(·)f(u) +

λ2

2

d

du
f 2(u) on M.

After finding a local minimizer of the functional

EM(u)
def
=

∫
M

{
‖∇u‖2

2λH(·)
−

[
λf 2(u)

2H(·)
+ (N − 1) F (u)

]}
dVg

where ‖5u‖2 = giku,iu,k = u,ku,k, u,k and u,k are respectively the covariant and contravariant
components of the gradient, F =

∫
0
f , problem (2) is shown to have a pattern, u say, for λ

large enough and f(u) = u− u3, as long as Ω is:

• strictly convex
• symmetric with respect to a hyperplane through the origin
• H(·) is sufficiently small on two arbitrary disjoint sets separated by this hyperplane

Think of it as an ellipsoid whose vertical axis is much smaller than the other two.
Finally u turns out to be the trace of the pattern for (1) we have been looking for.
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